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A COMPREHENSIVE SENSITIVITY ANALYSIS FRAMEWORK FOR

MODEL EVALUATION AND IMPROVEMENT USING A CASE STUDY

OF THE RANGELAND HYDROLOGY AND EROSION MODEL

H. Wei,  M. A. Nearing,  J. J. Stone

ABSTRACT. The complexity of numerical models and the large numbers of input factors result in complex interdependencies
of sensitivities to input parameter values, and high risk of having problematic or nonsensical model responses in localized
regions of the input parameter space. Sensitivity analysis (SA) is a useful tool for ascertaining model responses to input
variables. One popular method is local SA, which calculates the localized model response of output to an input parameter.
This article describes a comprehensive SA method to explore the parameter behavior globally by calculating localized
sensitivity indices over the entire parameter space. This article further describes how to use this framework to identify model
deficiencies and improve model function. The method was applied to the Rangeland Hydrology and Erosion Model (RHEM)
using soil erosion response as a case study. The results quantified the localized sensitivity, which varied and was
interdependently related to the input parameter values. This article also shows that the localized sensitivity indices, combined
with techniques such as correlation analysis and scatter plots, can be used effectively to compare the sensitivity of different
inputs, locate sensitive regions in the parameter space, decompose the dependency of the model response on the input
parameters, and identify nonlinear and incorrect relationships in the model. The method can be used as an element of the
iterative modeling process whereby the model response can be surveyed and problems identified and corrected in order to
construct a robust model.

Keywords. Hydrology, Local sensitivity, Morris’ screen method, RHEM, Soil erosion.

any numerical models involve the utilization of
a large number of input parameters, which
often results in complex interactions between
inputs and algorithms within the model. In all

models, it is generally desirable to understand the relation-
ships between output sensitivities and input parameter val-
ues, and how these relationships affect model predictions.
This is important not only for gaining a better understanding
of the model behavior, but also for detecting model deficien-
cies and unreasonable responses induced by the high level of
model complexity and the high number of model input pa-
rameters.

Sensitivity analysis (SA) is a method widely used to ascer-
tain the response of a simulation model to changes in its input
parameters. In practice, SA is not only applied to examine the
importance of input parameters but is also considered an im-
portant element of the model development process. SA helps
to elucidate the impact of different model structures, prepare
for model parameterization, and direct research priorities by
focusing on the parameters that contribute the most to uncer-
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tainty to the model response (Saltelli and Campolongo, 2000;
Breshears et al., 1992).

Many different SA techniques are available (see reviews
and comparisons by Helton, 1993; Campolongo and Saltelli,
1997; Saltelli and Campolongo, 2000; and Ionescu-Bujor and
Cacuci, 2004). Methods such as response surface, regional
SA, scatter plots, differential analysis, and Monte Carlo anal-
ysis may give impressive results, but they are not widely ap-
plied due to the lack of quantitative sensitivity indices, or
their difficulty in application to complex models (e.g., differ-
ential analysis). The most well known SA methodology cate-
gories are the so-called local SA and global SA. Local SA,
also termed the “one factor at a time” (OAT) or deterministic
approach, is a derivative-based method. It aims to quantify
the exact local response of output (Y) to a particular input fac-
tor (xi) at a selected point (x0) within the full input parameter
space for the model. The most common form of a local sensi-
tivity index is:
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where i = (1, ..., I), and I is the number of total input parame-
ters. The local sensitivity index measures the partial deriva-
tives of Y with respect to xi at point x0. Alternative forms of
the technique measure the effect on Y of perturbing the xi val-
ues by either a fixed amount (e.g., a fixed percent) or by some
estimate of the standard deviation of the input (Saltelli and
Campolongo, 2000).

The concept of local sensitivity analysis is simple, and it
is effective if the localized sensitivity is of interest. However,
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if the modeler wants information on the overall effect of an
input factor on the model, the limitation of this derivative-
based method is evident: it is not a representative overall sen-
sitivity index for most numerical models that involve
nonlinear relationships and strong interactions (Saltelli and
Campolongo, 2000). For a non-linear model, the local sensi-
tivity index is invalid if the chosen �xi is too large. This has
been demonstrated by Breshears et al. (1992). When he con-
ducted a sensitivity analysis based on different ranges of �xi,
the sensitivity index varied; thus, the local sensitivity index
was demonstrated to be a magnitude-based index. For a mod-
el with strong interactions due to the dependency of one pa-
rameter on the others, the modeler must obtain various local
sensitivity indices for a specific factor xi at different points x0.

Global SA was so named because it considers and calcu-
lates the total effect of a parameter on a model across the en-
tire parameter space. Most of the global SA methods are
variance-based,  i.e., the global sensitivity index is repre-
sented by the contribution of each input factor to the total
variance of the model output. The Fourier amplitude sensitiv-
ity test (FAST, and the extended FAST) is one of the variance-
based global SA approaches, and it has been successfully
applied in many different fields (Helton, 1993; Saltelli and
Campolongo, 2000; Crosetto and Tarantola, 2001). An alter-
native global SA approach, called multi-objective general-
ized sensitivity analysis (MOGSA), is based on an extension
of regional sensitivity analysis (Hornberger and Spear, 1981).
MOGSA investigates the sensitivities of individual parame-
ters by examining whether a prior distribution of the parame-
ters separates under a specific behavioral classification via a
K-S probability index (Liu et al., 2004).

In contrast to global SA, local SA does not help to capture
the overall effect of an input factor on a model output, but it
is the only way to investigate the parameter sensitivity for
specific input scenarios. This is especially important for
complex models that involve non-linear effects or strong in-
teractive relationships. For such complex models, the effect
of a given parameter may be highly localized; hence, an over-
all sensitivity index will not be applicable to every case and
will be misleading in many cases (i.e., regions of the input pa-
rameter space).

The localized sensitivity concept has been employed to
build very useful tools, such as Morris’ screening method
(Morris, 1991), the forward sensitivity analysis procedure
(FSAP) of Ionescu-Bujor and Cacuci (2004), and the adjoint
sensitivity analysis procedure (ASAP). The method of Morris
is widely used to identify key parameters (Saltelli and Cam-
polongo, 2000; Francos et al., 2003). It divides the range of
each input parameter xi into p levels, using Latin hypercube
randomly sampled points from the p × I parameter space (I is
the number of the parameters) and calculates the “elementary
effect” using equation 1, with �xi the predetermined multiple
of 1/(p − 1). For each xi, the elementary effects associated
with each selected point will form a distribution. The advan-
tage of this method is that the estimates of the means and stan-
dard deviations of the distributions can be used as indicators
of the importance of the input parameters. A large mean indi-
cates an important overall influence on the output. A large
standard deviation indicates that the influence is highly de-
pendent on the values of the inputs, and that the effect is either
non-linear or highly dependent on other factors.

Morris provided an effective framework for analyzing lo-
cal sensitivity across the entire parameter space. However,
the elementary effect of Morris uses a multiple of 1/(p − 1) as
the change in the input factor (�xi), which does not always en-
sure that the elementary effect is representative of the exactly
localized response of the output at point x0. This also limits
application of this method beyond the screening of the input
factors.

The objective of this article is to provide a new local sensi-
tivity analysis framework that can be used effectively to show
the interdependencies of sensitivity to multiple model inputs,
and which can be used in the model development process to
help identify undesirable or illogical model responses. This
study uses an algorithm similar to Morris’ framework, but
uses a different local sensitivity index to build a localized
sensitivity matrix over the entire parameter space. The sensi-
tivity matrix is further analyzed to make SA more effective
as an aid in the model development process. In this article, we
illustrate the use of this framework to: (1) examine the local-
ized sensitivity to each parameter, and list and classify the
importance of the input parameters; (2) locate the sensitive
region for an input parameter; (3) decompose the dependency
of model response on input parameter values to understand
the parameter interactions, using correlations and regres-
sions; and (4) generate scatter plots to survey the model re-
sponse and reveal the nonlinear relationships, thresholds, and
potential weaknesses or problems of the model structure.

This article, taking the erosion predictions in the Range-
land Hydrology and Erosion Model (RHEM) as an example,
not only highlights the local sensitivities, but also describes
how to investigate the interactions between RHEM parame-
ters and how to identify unusual RHEM behavior. Results
from this study will be helpful in improving the understand-
ing of the model behavior and parameter interactions in
RHEM, and in improving the integrity of the model predic-
tions.

METHODOLOGY
SENSITIVITY EQUATION

The local sensitivity index in this article is quantified by
the following equation:
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ized index that represents the normalized response of the out-
put to an increase in input value xi. The absolute magnitude
of 

)0(x
iS indicates the degree of sensitivity of Y to xi at point

x0. A positive (or negative) Si indicates a positive (or nega-
tive) relationship between Y and xi, i.e., an increase in xi will
cause an increase in Y. The percentage of 0/ ii xx∂  is expected
to be small enough to ensure that Si is representative at point
x0. One of the merits of equation 2 is that if 0/ ii xx∂  remains
a constant percentage, then the value of 

)0( x
iS  can be
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Sensitivity loops
1. Randomly select a point from the parameter space.
2. Calulate the sensitivity index for each parameter at that point.
3. Go back to 1 until a sufficient number of points is selected.

Build an input parameter space of interest,
and identify the targeting output parameter.

Sensitivity matrix
Sensitivity of output to each input parameter at each selected point

Sensitivity statistics
Relative importance

and classification
of parameters

Sensitive regions
Rank the sensitivities,
and identify sensitive

regions for parameters

Identify sensitive regions

Scatter plots

Survey the
model behavior

Dependency

Correlation analysis,
regression analysis

Identify unusual model behavior

Model weakness

Modify the model

A numerical model

New parameter space

Figure 1. Flowchart of the sensitivity analysis described in this article.

used to compare the sensitivity of the output to an input vari-
able at its different magnitudes. It can also be used to compare
the sensitivity of the output to different individual input fac-
tors, for example, the sensitivity of Y to xi and xj at point x0.

PROCEDURE

Figure 1 is a flowchart of the methodology used in this ar-
ticle. It starts with selecting the input and output parameters
to be analyzed. The ranges of each input parameter should
then be given to build the parameter space of interest, which
can encompass the full realistic range of all input parameters.
Points x0 were then randomly selected from the parameter
space, and sensitivity indices were calculated for each pa-
rameter at the selected point. Latin hypercube (LH) sampling
(McKay et al., 1979) was used for random sampling of points
x0. At each point selected by LH, the model was run (1 + I)
times. The first run was used to calculate and save the output
value at point x0 with no perturbation, and the next I runs were
used to calculate new output values after increasing each pa-
rameter, one at a time, by a predetermined percentage

)/( 0
ii xx∂ . The local sensitivity index for each input parame-

ter at this point was then calculated using equation 2 based on
the (1 + I) values of the output at this point.

In this study, the sampling procedure and local sensitivity
index calculation were repeated 10,000 times, after which the
parameter space was well covered and the points were well
distributed. At the conclusion of the runs, a sensitivity index
matrix had been constructed from the results, containing the
values of each parameter at each selected point and the local

sensitivity of the output to each input parameter at each point.
The absolute values of the sensitivities were also generated
for further analysis. A Fortran program was written to con-
nect the model, the LH sampling, the sensitivity loops, and
the building of the sensitivity matrix.

The sensitivity matrix was used for further analysis. It was
first used to examine the localized sensitivity for each param-
eter over the whole parameter space. The estimated means
and standard deviations of the distributions of each Si were
used to rank and classify the effects of the parameters. The
sensitivity matrix was also used to identify if there were con-
tiguous sensitive regions for particular parameters. The sen-
sitivity index (Si) and the model output were plotted to
examine the model response at different output values. Sensi-
tivities for different input parameters (Si and Sj) were plotted
to analyze the relationship between two parameters. Regres-
sion and correlation analysis were conducted to analyze the
dependency of sensitivity (Si) on the input parameter values.
Scatter plots of Si versus the value of the ith input parameter
were generated to identify unusual model responses and
model weaknesses.

LATIN HYPERCUBE SAMPLING

Latin hypercube (LH) sampling (McKay et al., 1979;
Stein, 1987) was used to select random points from the uni-
formly distributed parameter space. McKay et al. (1979)
compared several sampling techniques, and they concluded
that the LH method had a number of desirable advantages
over the other techniques. LH first divides the range of each
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input variable into N strata of equal probability 1/N, and then
samples a value from each stratum randomly. The values of
each input variable are combined at random to locate a point
in the parameter space. One of the advantages of this method
that makes it appropriate for this study is that LH ensures full
coverage over the range of each variable so that all areas of
the sample space will be represented by the selected input
values.

RHEM MODEL AND INPUT PARAMETER SPACE
The Rangeland Hydrology and Erosion Model (RHEM)

was developed from the Water Erosion Prediction Project
(WEPP) model (Flanagan and Nearing, 1995; Nearing et al.,
1989; Laflen et al., 1997). It predicts the hydrology, erosion,
and deposition from single storms based on fundamentals of
infiltration, surface runoff, hydraulics, and erosion mechan-
ics on the hillslope scale. In this study, we selected 14 input
parameters used in the hydrology and erosion components of
RHEM for the sensitivity analysis. The amount of soil ero-
sion from the hillslope, soil loss (kg/m2), was selected as the
targeted output variable. The parameter space of interest for
this study is the entire applicable space of the RHEM model.
Thus, the full range of all reasonable values that might occur
for each input parameter was used to build a 14-dimensional
parameter space (table 1). The ranges were based on recom-
mendations in the WEPP manual (Flanagan and Livingston,
1995) and the WEPP database (Elliot et al., 1989; Simanton
et al., 1991; Laflen et al., 1991; Alberts et al., 1995).

Table 1 lists the name, range, and description of each input
parameter studied. The range of each input parameter was re-
quired for the sensitivity study. The slope gradient (slp) and
slope length (sln) were the two parameters that represent the
slope condition. The rainfall parameters included storm total
rainfall (rain), peak rainfall intensity divided by average in-
tensity (xip), and storm duration (dur). Hydraulic parameters
were the Green-Ampt Mein-Larsen hydraulic conductivity
(ke) and effective matric potential (ns). Erosion parameters
were the interrill erodibility coefficient (ki), the rill erodibili−
ty coefficient (kr), and critical shear stress (�c). Friction pa-
rameters were runoff friction (fr) and erosion friction (fe).
Rill spacing on the hillslope was rsp. The particle size dis-
tribution parameter (psd) was used in the model to build a log-
normal distribution curve, from which five pairs of particle
size and fraction data were obtained and passed to the trans-
port capacity and deposition calculations. Building a lognor−

Table 1. Parameters and parameter ranges used in this study.
Input

Parameter
Lower
Bound

Upper
Bound Unit Description

slp 3 30 % Slope
sln 10 100 m Slope length

rain 20 120 mm Rainfall volume
dur 0.5 2 h Rainfall duration
xip 1 20 -- Rainfall peak intensity variable
ki 1000 2×106 kg*s/m4 Interrill erodibility
kr 0.00001 0.004 s/m Rill erodibility
τc 0.0001 7 N/m2 Critical shear stress
ke 0.8 40 mm/h Effective hydraulic conductivity
ns 0.00025 0.7 m Matric potential
fr 4.07 200 -- Friction factor for runoff
fe 1.11 100 -- Friction factor for erosion

rsp 0.5 5 m Rill spacing
psd −7 −1 -- Particle size distribution

mal distribution curve requires the values of the mean and
standard deviation; psd is the mean value, and it is always
negative due to the logarithm transformation. A constant
standard deviation of 2.163 was used for the distribution of
all types of sediments, which was based on the WEPP data-
base (Elliot et al., 1989; Simanton et al., 1991; Laflen et al.,
1991; Alberts et al., 1995).

The increment of each input parameter and the total num-
ber of samples were also required for the SA program. The
increment was arbitrarily set at 5% in this study. A small val-
ue of the increment is preferred to make the sensitivity index
representative  of the exact localized effect, but the increment
must be large enough to avoid rounding errors in the calcula-
tions. The total number of points should be determined by
considering not only the number of the input parameters but
the complexity of the model. In this study, 10,000 points were
used as a representative sampling of the full input parameter
space.

RESULTS
Approximately 50% of the 10,000 events did not generate

rainfall excess, which means that runoff and erosion from
these events was zero, and approximately 20% of the events
yielded runoff less than 5 mm, which was considered to be too
small to be of interest in terms of output. As a result, only the
3180 events (of the 10,000 total events) that generated runoff
greater than 5 mm were saved in the sensitivity matrix for fur-
ther analysis. The rainfall excess regime is mathematically
complicated and is controlled in the model by the relation-
ships between the rainfall and infiltration processes, which is
why only a portion of the combinations of the input parame-
ters yielded runoff events of interest. This result is important
because it is probably true for many numerical models that
only a portion of the entire parameter space yields relevant
results, and it is always interesting to know what this propor-
tion is and where it is located in the entire parameter space.

To reveal the location of the parameter space of interest,
we compared the histograms of each parameter in the entire
parameter space with that in the saved sensitivity matrix. The
distributions of all parameters in the entire parameter space
fell into uniform distributions according to the LH sampling
method used in this study. However, the results showed that
the distribution of some parameters changed after screening
out the non-significant events. For example, figure 2 shows
two distributions of the input parameter rain. Figure 2a shows
the distribution of rain in the parameter space of 10,000
events, and figure 2b shows the distribution of rain in the pa-
rameter space of the 3180 events that produced runoff greater
than 5 mm. It can be seen that many events with small rain
values were removed. In addition to rain, we found that some
events with high ke and ns values were also removed. This in-
dicates that these three parameters control the amount of run-
off.

LOCALIZED SENSITIVITY

Absolute local sensitivity can be used to compare the rela-
tive importance of the input parameters. Each row of the sen-
sitivity matrix generates a ranking of parameter importance
based on the rank of the absolute sensitivity values at each
point. However, the importance of a parameter varied from
point to point. For example, at point 23, the ranking of the pa−
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Figure 2. Distributions of parameter rain (a) in the whole parameter space
and (b) in the parameter space of interest.

rameters was: rain, dur, ke, ns, xip, ki, sln, psd, slp, fe, fr, rsp,
kr, and �c. At point 30, the ranking was: psd, rain, dur, xip, ke,
ki, ns, slp, fe, sln, fr, rsp, kr, and �c. Figure 3 lists the four most
important parameters based on the count of events. For
98.0% of the 3180 events, the total rainfall depth (rain) was
the most important parameter, but psd, dur, xip, slp, �c, and
ke also showed up as top-ranked parameters, and these pa-
rameters accounted for the remaining 2.0% of the events.
Storm duration (dur) was the second most sensitive parame-
ter for 68.5% of the total events, and slp, rain, xip, ki, kr, ke,
fe, and psd accounted for the rest (31.5%) of the events. The
third and fourth ranked parameters were more widely distrib-
uted among the input parameters (fig. 3). The results show
that for a complex model in which the input parameters inter-
act with each other, the sensitivity for input parameters may
vary greatly from point to point in the parameter space.

CLASSIFICATION OF INPUT PARAMETER EFFECTS

The distribution of the sensitivities (Si) for each input pa-
rameter can be generated from the sensitivity matrix, and the
characteristics of the distributions can be used to address and
classify the effects of the input parameters on the model out-
put (Morris, 1991; Saltelli and Campolongo, 2000). The
mean of Si describes the overall effect of the parameter on
model response, and the standard deviation of Si, which indi-
cates the spread tendency of Si, describes the interaction or
nonlinear effect of the parameter.
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Figure 3. Distribution of the four top-ranked input parameters based on
the count of events. The top graph shows that rain was the most sensitive
parameter for 97.99% of the events, with psd, dur, xip, slp, �c, and ke the
most sensitive parameters for the remaining 2.01% of the events.

Figure 4 shows the distribution of each Si based on abso-
lute values. The parameters are listed by the ranking of their
mean sensitivities for the overall effect: rain, dur, xip, ke, ns,
ki, psd, slp, sln, fe, fr, �c, kr, and rsp. Overall, the rainfall pa-
rameters (rain, dur, and xip) were the most sensitive variables
from RHEM. The next important group of variables included
the hydrologic parameters ke and ns.

Using figure 4, we can also investigate the effect of an in-
put parameter over the entire parameter space. For example,
the parameter rain had the highest mean value of sensitivity
(5.13), which means that given a small increase in rainfall
(5% in this study), the soil loss output will change by
5.13 times 5% on average. The maximum sensitivity index
of rain was 23.48, which indicates that, in this extreme case,
a small change in rainfall will induce a change in calculated
soil loss of 23 times the percentage change in the rainfall
amount. The minimum sensitivity of rain was 0.16, which
indicates that a change in rain will induce a change in soil loss
in all cases tested. The standard deviation of Srain was 2.96,
which was the largest value on the list. This indicated that the
sensitivity to rain varied greatly from case to case, and the ef-
fect of rain on soil loss was highly interactive with other pa-
rameters.

Tiscareno-Lopez et al. (1994) conducted a sensitivity
analysis on a similar soil erosion model (WEPP) on the
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Figure 4. Statistics of absolute sensitivities for each input parameter. The
sensitivity scale (y-axis) only shows values less than 10. The input parame-
ters (x-axis) are ranked in order of mean sensitivity, which is represented
by the small square symbols within the boxplots. Each Si  is represented as
a boxplot. The box height indicates the 25th and 75th percentiles, the “x”
symbols indicate the 5th and 95th percentiles, and the “−” symbols indi-
cate the minimum and maximum values. The input parameters are de-
scribed in table 1.

USDA-ARS Walnut Gulch Experimental Watershed located
near Tombstone, Arizona. The results from his study indi-
cated that, on that watershed, rainfall amount was the most
sensitive parameter, followed by ke. From our results, rain
was the most important parameter for 98.0% of events, fol-
lowed by slp, psd, ki, �c, or ke depending on the combination
of input values. From figures 3 and 4, we can see that RHEM
is a complex model, whereby the localized sensitivities vary
greatly from site to site.

Estimates of the sensitivity distributions can also be used
to compare and classify the input parameters. A plot of the
mean and standard deviation of each Si is given in figure 5.
This figure has often been used to classify the effects of pa-
rameters as a preliminary analysis (Morris, 1991; Saltelli and
Campolongo, 2000; Francos et al., 2003). From figure 5, the
input parameters can be generally classified into three
groups: rain is alone in the first group with both the highest
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Figure 5. Plot of the estimated means and standard deviations of the dis-
tribution of Si . This plot helps to classify the effect of each input parameter
(Morris, 1991).
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overall effect and the highest interaction or nonlinear effect;
dur, ke, xip, ns, and psd are in the second group with median
effects; and the rest of the parameters are in the third group,
which contains the least important parameters.

IDENTIFICATION OF SENSITIVE REGIONS

Identification  of the sensitive regions could be very useful
for both the model developer and model user. Ranking the
sensitivity matrix by the sensitivity (Si) to a parameter and
then examining the continuity of the input parameter values
is one way to locate the sensitive regions for this parameter.
The distribution of these regions is dependent on the model
complexity, the number of the input parameters, and the size
of the parameter space. For a simple model with few input pa-
rameters, and especially when the sensitive regions tend to be
tightly packed and well connected with a strong gradient
within the parameter space (i.e., highly distinct from the non-
sensitive regions), the sensitive regions may be easier to iden-
tify. For a complex model, such identification may be
difficult, but the process may be made easier if the non-
related parameters are removed from the matrix and or if the
parameter space is redefined to a smaller subset of the full in-
put parameter space. The framework of this method is simple
and allows re-analysis of the sensitivities based on the small-
er, newly defined parameter space of interest (fig. 1).

For example, the overall effect of critical shear stress (�c)
is small, but based on the ranked sensitivity matrix by ,
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Figure 7. Sensitivity of soil loss to rain (Srain) vs. magnitude of soil loss.
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found that the model could be very sensitive to �c for some
extreme events. Furthermore, in the ranked matrix, we found
that the sensitivity to �c tended to be higher when ki was
small. This is a reasonable relationship because a low ki
means that interrill contributions to erosion will be insignifi-
cant, and that rill erosion will be far more important. Since
�c affects rill erosion, it is reasonable that it is a very sensitive
parameter for these situations. Figure 6 shows the relation-
ship between 

c
Sτ  and ki. The value of 

c
Sτ  was not always high

for all cases of small ki because 
c

Sτ  also depended on the val-
ues of other parameters (particularly kr and �c itself).

MODEL RESPONSE RELATED TO OUTPUT VALUES
A plot of the sensitivity index (Si) versus the output values

(soil loss) revealed the interesting fact that as the soil loss lev-
els decrease, the sensitivities to the input parameters tend to
increase. Figure 7 is an example of Srain plotted against the
soil loss values. The sensitivity indices for all the input values
showed a similar relationship with soil loss values. This rela-
tionship indicates that there is more uncertainty involved for
small soil loss events, which is consistent with the results of
Nearing (2000), who showed that model predictions of ero-
sion compared to field measurements show less relative error
for larger magnitudes of measured erosion.

RELATIONSHIP BETWEEN SENSITIVITIES FOR DIFFERENT IN-
PUT PARAMETERS

Figure 8 is a plot of Ski versus Skr that shows the relation-
ship between the two parameters: the sensitivity for ki can be
large only when the sensitivity for kr is low, and vice versa.
This relationship makes sense because soil loss in RHEM is
controlled by both interrill erosion and rill erosion, which are
associated with ki and kr, respectively. The total soil loss is
the summation of the soil loss from the rill area and the inter-
rill area. If the interrill erosion accounts for the larger propor-
tion of the total soil loss, then Ski will be higher than Skr. On
the other hand, if the rill erosion accounts for the larger pro-
portion, then the total soil loss will be more sensitive to kr
than to ki. In addition to kr, rill erosion is also controlled by
�c, and the contribution to erosion by rilling only occurs when
the flow shear exceeds the critical hydraulic shear stress (�c).
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Figure 8. Plot of sensitivities of Ski  vs. Skr.

In fact, 2,483 of the 3,180 events (78.08%) did not generate
rill erosion, and Skr and 

c
Sτ  were both zero for these events.

This explains why the overall sensitivity to ki (figs. 2 and 3)
was greater than to kr and �c, and why figure 8 shows many
points located at Ski = 1. Furthermore, the sensitivity of soil
loss to ki also depends on other parameters, such as psd and
fr (see next section), and Ski is not always 1 when Skr and 

c
Sτ

are 0.

DEPENDENCIES OF SENSITIVITY INDICES ON INPUT PARAME-
TER VALUES

Regression analysis and correlation analysis were used to
understand the dependence of the sensitivity for an input pa−
rameter on the parameter values (table 2). The coefficient of
determination  (R2) of the regression describes the percentage
of the variance of the sensitivity index that can be explained
by the magnitudes of the input parameters. The correlation
coefficients of Si and the values of each input parameter re-
veal the dependence of Si on each input parameter. For exam-
ple, it can be seen from table 2 that approximately 50% of the
variance of Sfr, Ssln, and Ske can be explained by the magni-
tudes of the entire input parameter set. The correlation matrix
in table 2 helps to further decompose this dependency. As can
be seen, Sfr is dependent on parameters kr and ki; thus, the

Table 2. Dependencies of sensitivity indices on the input parameter values.

Input
Parameters

Sensitivity Indices

Sfr Ssln Ske Ski Srain Sns Sxip Sfe Sslp Sdur Skr Spsd Stc Srsp

R2 of the regression of Si on input parameter values
0.518 0.511 0.475 0.444 0.432 0.399 0.389 0.376 0.374 0.223 0.221 0.116 0.068 0.024

Correlation coefficient of Si to each input parameter
slp −0.172 0.247 0.084 −0.171 −0.134 0.057 0.050 0.148 0.009 0.060 0.079 0.352 −0.051 −0.005
sln −0.217 −0.307 −0.190 −0.160 0.125 −0.110 −0.123 −0.187 0.278 0.060 0.015 −0.072 −0.012 0.035

rain 0.145 0.086 0.335 0.101 0.096 0.249 −0.072 0.036 −0.120 −0.036 −0.008 0.036 0.024 −0.026
dur −0.127 0.043 −0.282 −0.061 −0.177 −0.135 0.154 0.014 0.033 −0.010 −0.015 0.003 −0.045 0.005
xip 0.162 −0.102 0.324 0.089 0.094 0.180 0.108 −0.063 −0.041 0.234 0.004 −0.006 0.029 0.004
ki 0.325 −0.109 −0.001 0.206 0.088 0.003 0.019 −0.045 −0.219 −0.093 −0.083 −0.409 0.096 −0.022
kr −0.370 0.070 −0.018 −0.193 0.004 0.007 −0.001 −0.004 0.144 0.040 0.048 −0.004 −0.100 0.066
τc 0.166 −0.020 0.025 0.158 −0.014 −0.015 0.002 −0.030 −0.088 −0.034 −0.048 −0.002 −0.016 −0.027
ke −0.060 −0.068 −0.438 −0.041 −0.099 −0.193 0.100 −0.023 0.041 0.011 −0.010 −0.027 −0.020 0.024
Ns −0.051 −0.066 −0.241 −0.040 −0.103 −0.362 0.089 −0.014 0.035 0.032 −0.010 −0.031 −0.014 0.021
fr −0.122 −0.346 −0.198 −0.095 0.134 −0.125 −0.133 −0.214 0.259 0.050 −0.003 −0.071 0.002 0.031
fe 0.265 −0.094 0.012 0.251 0.081 −0.003 0.015 −0.056 −0.185 −0.100 −0.087 −0.370 0.059 −0.015

rsp −0.037 −0.039 −0.018 −0.098 0.003 0.021 0.001 0.038 0.019 0.029 0.030 −0.034 0.060 −0.044
psd 0.224 0.034 0.024 0.165 −0.020 0.006 0.012 0.024 −0.153 −0.025 0.013 −0.087 0.025 −0.010
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Figure 9. Scatter plot of sensitivity of soil loss to psd (Spsd) vs. psd, reveal-
ing a discontinuous model response when psd is close to −3.2.

sensitivity of runoff friction (fr) is related to the magnitude
of the erosion parameters.

The coefficients in table 2 reveal many insights into the
relationships between the parameters. For example, Sns and
Ske are dependent on the values of rain, dur, and xip. This
relationship reflects the fact that runoff generation in RHEM
is controlled by both the rainfall regime (associated with rain-
fall parameters rain, dur, and xip) and the infiltration regime
(associated with hydrologic parameters ke and ns).

Table 2 also shows that there is negative correlation be-
tween Ske and ke, which indicates that the response of soil loss
to ke is dependent on the magnitude of ke itself. The negative
correlation coefficient indicates that the higher the ke value,
the greater the sensitivity for parameter ke. This relationship
makes sense because a high ke value is often associated with
a small amount of runoff and soil loss, and the sensitivity of
soil loss to input parameters increases as the soil loss value
decreases (as shown in fig. 7).

SCATTER PLOTS TO IDENTIFY CHARACTERISTICS OF MODEL

BEHAVIOR
Scatter plots of the sensitivity index (Si) at each point over

the values of the ith parameter at this point can help the mod-
eler survey the model response and identify nonlinear rela-
tionships, thresholds, and potential model problems.
Figure 9 is a scatter plot of Spsd over the corresponding psd
values. The parameter psd is important because it is the only
parameter that accounts for particle size distribution in this
study. Figure 9 is revealing because it shows an unexpected
and undesirable model response around the psd value of −3.2.
The same sensitivity procedures, focused on a narrow region
of psd (−3.0, −3.4) for a closer look, confirmed the inconsis-
tent model behavior. For example, for sediment with a psd of
−3.31, a 5% increase in psd could induce a 70% increase in
soil loss, which was much more sensitive than simulations
with psd values outside this region. This is not a reasonable
model response for this variable. A careful examination sug-
gested that the cause of this problem is that the transport ca−
pacity was calculated based on different sediment particle
sizes.

Another model problem was found by looking at the plot
of Sxip over xip (fig. 10). According to the modeler’s under-
standing of the erosion process and model structure, an in-
crease in xip should only induce increases in soil loss; thus,
Sxip should always be positive. However, figure 10 shows
there are some situations where Sxip is negative, and they
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Figure 10. Scatter plot of sensitivity of soil loss to xip (Sxip) vs. xip values.

show up at various magnitudes of xip. A closer look at those
points with negative Sxip values showed the general tendency
that xip was more sensitive as the value of xip increased.

The cause of this problem was found by careful examina-
tion of one of the problematic events. In RHEM, the rainfall
parameters (rain, xip, and dur) are read from an input file and
transformed into a double-exponential hyetograph to simu-
late the time-step rainfall process. The parameter rain con-
trols the total area under the hyetograph, dur controls the
duration of the hyetograph, and xip controls the peak of the
hyetograph. The hydrograph is calculated on a fixed time step
based on the hyetograph and on the infiltration calculations.
Water becomes available for runoff generation only when the
rainfall rate at a time step exceeds the infiltration rate at the
time step. Thus, the shape of the hyetograph and the infiltra-
tion curve control the duration and amount of runoff, and with
the roughness, slope length, and gradient, they control the
peak rate of runoff and consequent soil loss value.

The erosion model uses a double-exponential transforma-
tion approximation for creating the synthetic hyetograph
from rainfall input values. Because of the way in which this
done, there are a small number of combinations of the three
rainfall parameters such that when the modeler increases xip
and maintains constant values of rain and dur, the model in−
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Figure 11. Hydrographs from rainfall events with the same rain (41.82
mm) and dur (47.83 min) but with different xip values. Due to the double-
exponential transformation in the model, an increase in xip sometime
causes an increase in rainfall peak and a decrease in rainfall at the begin-
ning of the hyetograph. This distortion of the hyetograph may cause an
observed decrease of runoff and soil loss corresponding with the increase
in xip, explaining the unexpected negative Sxip  values in figure 10.
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creases the rainfall intensity peak but also reduces the rainfall
amount at the beginning of the hyetograph. This small differ-
ence in the shape of the hyetograph can make a large differ-
ence in the hydrograph in a limited number of cases (fig. 10).
Less runoff can be generated after the increase in xip, and the
modeler can thus obtain a negative Sxip for these events. This
also explains why the higher the xip value, the more sensitive
xip becomes for points with negative Sxip, because the higher
the xip value, the more distortion occurs at the beginning of
the hyetograph. Figure 11 is an example of how increasing xip
may induce a decrease in runoff. The total runoff amounts
from the two events are 17.94 mm (xip = 3.94) and 14.81 mm
(xip = 4.13), respectively.

The three examples above describe how scatter plots of lo-
cal sensitivity indices over the local parameter values may
help to identify nonlinear relationships, thresholds, and mod-
el problems. Scatter plots such as figures 9 and 10 are also
very useful when the modeler is attempting to fix model prob-
lems, as shown in the flowchart (fig. 1).

CONCLUSION
A sensitivity analysis method based on the concept of lo-

cal sensitivity and Latin hypercube sampling was conducted,
using the soil erosion component in RHEM as a case study.
The local sensitivity indices of soil loss to 14 input parame-
ters of RHEM at 10,000 points from the full parameter space
were obtained and used to build a sensitivity matrix. The sen-
sitivity matrix was analyzed by correlation analysis and scat-
ter plots to draw useful insights into model response and
interactions between model parameters: (1) the results high-
lighted the importance of local sensitivity, which varies from
site to site for a complex model such as RHEM; (2) these
analyses showed the relative importance of different input
parameters;  (3) the results also showed the ability of the
method to identify the sensitive range and relationships be-
tween input parameters; (4) the method was used to decom-
pose the dependency of model response on input parameter
values; (5) the method effectively detected model errors. The
method described in this article can be used as an element of
the iterative model development process whereby model re-
sponse can be surveyed and problems identified and cor-
rected in order to construct a robust model.
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